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reefs, the fish of known species becoming larger as we go outward. Some
of the most abundant mid-water types, such as Chromis cyaneus and
Sardinella aurita are rare or unknown in-shore.

Beyond this and down to 200 feet, the bottom is less rugged, and the.
seafans and plumes smaller. Then comes an abrupt range; in one spot,
over which the Bathysphere had to be drawn, 50 feet in height. Beyond
this comes a long, sloping beach, of water-worn pebbles and stones, wholly
without living growths or fish, and ending in wide stretches of white,
rippled sand. It is probable that this is the beach of the last low ocean
level of the glacial period.

The slow seaward drift of the tug, and the average level of the Bathy-
sphere of 10 feet above the bottom, enable us to see all fish, down to two
inches, with perfect clearness.

In mid-summer, with a day of brilliant sunshine and with clear water,
it will be quite possible to follow the volcanic slopes down for many hundred
feet farther without losing sight of the bottom.

LN. Y. Zool. Soc. Bull., 33, No. 6, 227.
2 Jour. Opt. Soc. Amer., 22, No. 7, 408—417.
3 The Arcturus Adventure, pp. 214-218.
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The problem of Plateau was completely solved by J. Douglas,! who
proved the existence of a minimal surface bounded by any given Jordan
curve.

The solution divided itself into two parts, the first referring to a contour
which spans at least one surface of finite area, after which by a limit process
the existence proof was extended to an arbitrary Jordan curve I' which
spans no finite area: every surface bounded by T' has infinite area.

The question was thus raised as to the effective existence of the second
type of contour. An example (P), based on Peano curves in the xy-
plane, was constructed by the joint authors of this note,? and the basis
of proof briefly indicated as consisting in infinite area of the horizontal
projection of (P). A few further remarks concerning this example w111
be found at the end of this note.

Our main purpose in this communication is to give a s1mpler example
in the form of a step-polygon of a denumerable infinity of sides, together
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with all the details of proof. This step-polygon may be considered as more
simple than, for instance, many rectifiable curves—showing that one must
be careful not to overestimate the generality of any treatment of the
Plateau problem that restricts itself to the case of a finite-area-spanning
contour.

1. Description.—To arrive at the example, we begin by constructing a
“skyscraper” of an infinite number of floors, and with infinite floor space,
but finite height. The ground plan (horizontal projection) of the sky-
scraper is shown in figure 1. The sides of the squares, which crowd into
the left rear corner, are

1 :
Ve ®=123" .. ad infin),

and each square represents a floor. . The total floor space is the sum of the
divergent harmonic series:

E = .

ne=1 ”
The skyscraper is formed by raising the nth square a vertical distance
] ,

2_,;——1,
so that the total height is unity.
We next take the »th floor and divide it into
2"+ 1

equal rectangular strips. Then we construct a broken line as indicated in
figure 2, running back and forth along the sides of these rectangles. Since
2" + 1 is odd, it is evident from the mode of

construction that the broken line will end at
the left forward corner B, of the square if it
starts at the left rear corner 4,. w

We thus have a rectangular broken line in
each floor. These we connect by joining A,
to A2m—l with a vertical line segment, and .Bzm
to Bzm+1 with a vertical segment Bsz2m+1
to the level of the (2m + 1)th floor followed
by the horizontal segment sz+1Bgm.|.1

We now have a Jordan arc in the form of
a rectangular broken line consisting of a denumerable infinity of segments,
going from B; (0,1,0) to 4, (0,0,1). This may be completed to an in-
finitely many sided closed Jorda.n step-polygon by the line segments B,C,
CA ,, where C is the point (0,1,1).

Our example is now finished.

FIGURE 1
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2. Proof—Cylindrical Pipes—About each of the transverse, or
long, segments of the broken line which traverses the nth square—except
the last segment, ending at B,—let a cylinder of revolution be constructed
as follows. The axis of the cylinder shall be one-half the length of the
segment, symmetrically placed with respect to the ends (from the one-

quarter division point to the three-quarters point);
the radius R, shall be one-half the width of a rec-
tangular strip, that is:
1
B=3@+ove

Since the distance between the nth and (» 4 1)th

1
floors is o each cylinder reaches less than half-way
to the floor next above, and a fortiors less than half-way to the floor next
below; therefore the cylinders do not overlap, though (what is of no im-
portance) those on the same floor are externally tangent.

We shall need the fact that the total area of the generating rectangles

FIGURE 2

1
of the cylinders on the #nth floor is one-fourth the area of that floor, = o

Next we need the following lemma.

LemMma. Consider a right circular cylinder with axis AB. If any simply
connected surface is spanned by AB '
together with a curve joining A and
B lying entirely outside the cylinder,
the area of the portion of the sur-
face interior to the cylinder is at
least equal to that of the generating
rectangle of the cylinder.

The proof results immediately
by circular projection of the por-
tion of surface interior to the
cylinder on a meridian plane, an
operation which obviously dimin-
ishes area (or, at most, leaves it
the same), multiplying each ele-
ment of area by the cosine of the /
angle between the tangent plane B,
to the element and the meridian FIGURE 3
plane through the point where the
element is located. By the same proof, the theorem extends to any solid of
revolution, the minimum intercepted area being half a meridian section.

Infinite Area.—Consider now the cylindrical pipes on the nth floor.
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The sum of the areas of their generating rectangles is, as has been remarked,

1
i consequently the portion of any simply connected surface 2 bounded

1
by the step-polygon intercepted by these cylinders is at least in in area.
Since the cylinders on different floors do not overlap, the area of the portion

. 1
of = intercepted by all the cylinders is at least 1 the sum of the divergent
harmonic series; hence )
Area of 2 = 4+ o,

which was to be proved.

The infinite part of the area of the minimal surface M determined by
the step-polygon is all bunched up in the vicinity of the singular point
A, summit of the “skyscraper.” If, in traversing the boundary of M,
we make a detour around A4 _, passing between two boundary points on
opposite sides of 4, by any arc lying, except for its end-points, in the
interior of M, then the area of the intercepted part of M will be finite.

3. Remarks on the Example (P).—If the reader is interested in the
details of proof for the originally given contour (P), he should find little
difficulty in supplying them on the model of the foregoing discussion.
In fact, if the Peano curve (P’) which is the xy-projection of (P) is re-
placed by a sufficiently advanced polygonal approximation,® the following
hint should suffice to prove that even the simplified version of (P) so re-
sulting (skew polygon of a denumerable infinity of sides) can span no finite
area.

Hint.—A square column, tall, with very small base, is traversed by a line
segment ¢ from a point well up on a lateral edge to a point at about the
same level on the diagonally opposite edge. Then the area intercepted
by the column on any surface bounded by a contour consisting of ¢ to-
gether with an arc lying entirely outside the column is at least equal to
the area of one of the 45° right triangles into which the base is divided by
a diagonal.

1 “Solution of the Problem of Plateau,” Trans. Amer. Math. Soc., 33, 263-321 (1931).

2 Loc. cit., p. 320.
3 F. Klein, El 7 th tik vom hiheren Standpunkte aus, 3d ed., Berlin, 1928,

p. 119.




